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Abstract

It is quite difficult to calculate the collapse probability of a system such as a statically indeterminate structure that

has many possible modes or paths to complete failure and the problem has remained essentially unsolved. Generally, a

structure is synthesized by several components or elements and its capacity to resist the given load(s) is a function of the

capacity of the individual element. Thus it is reasonable to assess the probability of failure of the system based upon its

element-wise failure probability information. This paper proposes an efficient technique to directly assess the reliability

of a complex structural system from the reliabilities of its components or elements. The theory for the calculation of the

probability of a structural system is presented along with the target requirements and the fundamental assumptions

governing the method. A portal frame and two truss structures are selected to demonstrate the efficiency of the method

by comparing the results obtained from the proposed method to those from the existing methods in the literature.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: System reliability; Probability of failure; Statically indeterminate structure
1. Introduction

The modern trend in structural mechanics has been to take into consideration the random nature of the

loads to which structures are subjected, and the variation in the material properties of the structural

constituents. In other words, the loads impacting a structure and the resistance of the structure are con-

sidered to be random variables. The safety margin provided by the structure is the amount by which the
random resistance of the structure exceeds the random load applied to the structure. Failure is said to occur
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when the safety margin is less than, or equal to, zero. The relative safety of a structure is now expressed in

terms of a probability of failure, which is the complement of the reliability of the structure. Many attempts

have been made on the evaluation of reliability of structures. In general, real structures which are highly

indeterminate, in other words ‘‘complex’’, may fail in one or combination of several modes. The approaches
to evaluating structural safety of such complex structures can be categorized into three methods: (a)

numerical integration method; (b) failure path method; and (c) simulation.

In the numerical integration method, a failure mode is defined by a limit state surface which divides the

space of basic variables into two sets, the safety set and the failure set (Ditlevsen, 1979). The probability of

failure can be calculated by integration of the probability density functions over the failure set. Some

researchers have attempted to evaluate the probability of failure by integrating numerically the joint

probability density function of the applied loads over the failure set (Kam et al., 1983; Lin and Corotis,

1985). However, these approaches were limited to two-dimensional spaces since direct integration is
impractical in multi-dimensional space.

In the failure path method, reliability analysis of a structural system can be divided into two steps: (a)

identification of failure modes; and (b) estimation of failure probabilities of individual modes and the

overall system. The failure modes can be identified using the standard structural analysis and may be

generated automatically as demonstrated by Watwood (1979) and Gorman (1981). However, real structures

can have many different failure modes and it is infeasible to enumerate all the possible failure modes. Many

studies have focused on the possibility of using dominant failure modes based on the assumption that safety

of a structural system can be estimated efficiently using these dominant failure modes (Moses and Stahl,
1978; Ang and Ma, 1981; Murotsu et al., 1984; Thoft-Christensen and Murotsu, 1986; Ranganathan and

Deshpande, 1987; Tung and Kiremidjian, 1992). The last step of reliability analysis is calculation of failure

probability of a system using combination of failure modes and bound techniques.

Monte Carlo simulation has been often used to estimate the probability of failure and to verify the

results of other reliability analysis methods (Ang and Tang, 1984; Grimmelt and Schueller, 1982; Schueller

and Stix, 1987). In this technique, the random loads and random resistance of a structure are simulated and

these simulated data are used to find out if the structure fails or not, according to pre-determined limit

states. The probability of failure is the relative ratio between the number of failure occurrence and the total
number of simulations. This technique is easy to apply but when encountered low failure probability which

is typical in real structural systems, the number of simulation is larger so the method is generally not

practical for most realistic problems.

Although these previous works represent great strides in structural safety evaluation, many problems

remain to be solved. One of obstacles in the area of reliability analysis is difficulty to calculate failure

probability of complex structures, which are, for example, highly indeterminate and have many elements,

using currently developed methods. The objective of this paper is to present a practical methodology that

can be used to estimate the system reliability of arbitrary structures and to provide evidence to support the
validity of the methodology.
2. Theory

The reliability or safety of a structure is its ability to withstand the design loads for a specified period of

time. If the probability of failure of the system is given by Psystem, the reliability of the system, R, is defined as
R ¼ 1� Psystem ð1Þ
A practical methodology is presented below for the evaluation of the reliability of arbitrary structural

systems. To meet this objective, the following four tasks will be accomplished: (a) describe the background
of the methodology; (b) discuss a set of realistic target requirements for the methodology; (c) postulate a set
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of assumptions to be used as a basis for the methodology and describe the basic components of the

methodology that are consistent with the target requirements and the basic assumptions; and (d) select a

model to estimate the failure probabilities of components/elements.
2.1. Background

A mechanical system is any combination of individual elements that are synthesized to perform a

dedicated mechanical function. For the purposes of this study, any mechanical system may be assigned to
one of the following three categories: series systems (see Fig. 1), parallel systems (see Fig. 2), or hybrid

systems (see Fig. 3). Series systems are those systems in which the failure of any element leads to the failure

of the system. Parallel systems are those systems in which the combined failure of each and every element of

the system results in the failure of the system. If a system does not satisfy these strict definitions of ‘‘series’’

or ‘‘parallel’’ systems, the system is classified as a hybrid system. Hybrid systems are those systems in which

‘‘few,’’ ‘‘some,’’ or ‘‘most’’ (but not ‘‘anyone’’ or ‘‘all’’) of the elements must fail in order for the system to

fail. Any combination of elements whose failure results in the failure of the system is known as a failure

mode. In the language of structural mechanics, hybrid systems are statically indeterminate (redundant)
structures with many possible failure modes.

A hybrid system may be described as a series system of parallel modes of failure. For a single mode of

failure in a system, the possibility exists for there to be statistical correlation between the demand on the

elements in that mode or the capacity of the elements to resist the demand. Furthermore, since the same

element may participate in more than one mode of failure, statistical correlation must also exist among the
Fig. 1. Series system.

Fig. 2. Parallel system.

Fig. 3. Hybrid system.



5038 S. Park et al. / International Journal of Solids and Structures 41 (2004) 5035–5050
various failure modes of a hybrid (or series or parallel) system. In this study, hybrid systems in which

statistical correlation exists among elements and failure modes are designated as complex systems. A major

problem in reliability theory is the efficient and accurate determination of the failure probabilities of highly

redundant structural systems with correlated modes of failure.

2.2. Target requirements of the methodology

The target requirements for the proposed methodology are divided into two categories: primary

requirements and functional requirements. Primary requirements are those characteristics and features that

the methodology should possess. Functional requirements are specific tasks that must be performed by
components of the methodology such that the primary requirements are satisfied. The desired primary

requirements associated with the methodology can be stated as follows: (a) the reliability predictions should

be accurate; (b) the rationale for the method should be logical; (c) the methodology should be internally

consistent; (d) the methodology should be relevant; (e) the methodology should be versatile; (f) the

methodology should not be overly complex; and (g) the methodology should be computationally com-

petitive. These primary characteristics will be satisfied if the following functional requirements are per-

formed:

1. The predicted probabilities of system failure should be close to values predicted by other theories;

2. The prediction should agree with Monte Carlo simulations of structural system failure;

3. How the proposed method is related to other methods of system reliability evaluations should be clearly

indicated;

4. The method should be at least as computationally efficient as the other leading methods;

5. The methodology should apply to any structural type (e.g., frames, trusses, etc.. . .); and
6. The basic assumptions underlying the methodology should be clearly stated.

2.3. Fundamental assumptions governing the methodology

The proposed methodology builds on five fundamental assumptions that involve the following: (a) the

definition of failure modes; (b) the extent of statistical correlation among safety margins of basic elements;

(c) the sequence of component failure; (d) the definition of system failure; and (e) a rule for the rapid

estimation of the failure probability of the system and the identification of the components of the most
likely mode of failure. Theses basic assumptions are discussed below.

2.3.1. Types of failure modes

Two types of failure modes considered in this methodology can be discussed with the truss shown in Fig.

4. The first type of failure mode is designated the ‘‘global failure mode’’. This type of mode exists when the

structure as a whole becomes geometrically unstable. In Fig. 4(a) for example, the degrees of static inde-

terminacy (redundancy) of the structure are three. Therefore, the structure will become kinematically
unstable if any combination of four of its 16 elements fail. In general, if s is the redundancy of a structure,

the structure fails if sþ 1 components fail.

Note that the structure may also be considered to have failed if anyone of the three stories fails. Fig. 4(b)

depicts three logical substructures of the complete system. Note that each substructure has a redundancy of

one. Therefore, if any two elements of one of the substructures fail, a floor of the structure will fail. The

latter failure modes are deemed local failure modes. Thus the number of failure modes for a structure is the

sum of the global modes and the local modes. This discussion can be extended to other types of structures.

All that one has to do is to determine the redundancy of the global structure, isolate the basic substructure
units, then determine the redundancy of the substructures.



Fig. 4. A 16-member truss structure: (a) whole system (b) three substructures of the system.
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2.3.2. Justification of the correlation assumption

The basic unit in the reliability of a hybrid system is the failure mode. Note that each failure mode is a

parallel system. The computation of the failure probability of a parallel system can be simplified signifi-

cantly if it is assumed that the safety margins of the basic elements are completely correlated. This

assumption holds true for many practical structures. Let a structure have M failure elements (e.g., the
failure in tension of each and every one of the truss members of the truss shown in Fig. 4). The random

safety margin, gi, of the ith element is given by
gi ¼ Ri �
XNL

j¼1

eijSj ð2Þ
where Ri is the random resistance of element i, Sj is the applied jth load on the structure, eij is the influence
coefficient which depends upon the geometry, redundancy, and material properties of the structure, and NL

is the number of applied loads.
Let elements k, l, m, n, and o be involved in failure mode j. Then the probability of failure of that mode,

Pj, is given by
Pj ¼ Pf½gk 6 0� \ ½gl 6 0� \ ½gm 6 0� \ ½gn 6 0� \ ½go 6 0�g ð3Þ
For most structures made of the same material, the resistance, Ri, are correlated. Also, because of the

common existence of the loads Sj in (2), the random safety margins are also correlated. Thus in most

structures, one expects a significant degree of correlation among the safety margins. Therefore, if it is

assumed that the safety margins of each and every mode are complete correlated, an estimate of the

probability of failure of the mode given by (3) is
Pj � Minfpk; pl; pm; pn; pog ð4Þ

where, for example,
pk ¼ P ½gk 6 0� ð5Þ
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Note that the estimate of the failure probability in (4) represents an upper bound to the failure probability

of a parallel system. This estimate is, therefore, a conservative estimate of the failure probability of the

mode.
2.3.3. The consequence of ignoring the sequence of component failure

Here it is asserted that the estimation of the failure probability of a highly redundant system can be

significantly simplified if the sequence of the failure of the components of a given mode is ignored. If the

stated assumption is adhered to, at least two major consequences follow. First, the number of failure modes

to be considered is reduced significantly. For example, if there are a total of n failure components and each

mode contains r elements, in the beta-unzipping method (Thoft-Christensen and Murotsu, 1986), there are
P ðn; rÞ possible modes; whereas, if the sequence of the failure of the components is ignored, there are Cðn; rÞ
possible modes. Note that Pðn; rÞ ¼ r!Cðn; rÞ where P denotes permutation and C denotes combination. For

the truss example shown in Fig. 4, for the case of global modes, r ¼ 4 and n ¼ 16. Accordingly,

P ðn; rÞ ¼ 43; 680 and Cðn; rÞ ¼ 1820.

The second consequence of the sequence-relaxation assumption is the reduction in the number of

structural analyses that have to be performed to make a determination of the probability of failure of the

system. In the beta-unzipping method, for example, if one wants to determine the most likely mode of

failure for the truss in Fig. 4, for s ¼ 3, three structural analyses and re-analyses are required to determine
the most ‘‘probable’’ sequence of failure. If the sequence of failure is ignored, only a single structural

analysis is required.
2.3.4. The probability of system failure

Having introduced the simplifying assumptions of complete correlation among modes and the unim-

portance of the sequence of component failure in a given mode, the safety of a structure with many modes
must now be defined. As noted previously, any hybrid system may be modeled as a series system of parallel

modes such as the one depicted in Fig. 3. Note that the failure probability of mode j is assigned to the

structure according to the rule stipulated in (4). If Fi is denoted to be the event that failure of mode i occurs
and Pi is the probability of occurrence of that event, then the failure probability of the system is given by
Psystem ¼ P
[NM

i¼1

Fi

" #
ð6Þ
where NM is the number of possible failure modes.

Since complete correlation among the modes has been assumed, it follows that
Psystem ¼ Max½P1; P2; P3; . . . ; PNM� ð7Þ
2.3.5. Rapid estimation of system reliability

In order to execute (7), one needs to know the probability of failure of each mode. Even though the

sequence of component failure has been ignored, the task of identifying all NM possible failure modes

could be formidable. For example, in the structure provided in Fig. 4, the number of failure modes in the

structure with a redundancy of as little as 3 and 16 possible failure elements is 1820. Thus the objective of

this section is to develop a simple rule that engenders the solution of (7) without having to identify the

numerous individual failure modes. This objective can be accomplished via mathematical induction.

Let the system have n failure components. For example, in the truss depicted in Fig. 4, the number of

components is 16. Assuming that the component failure probabilities, ai, are known, reorder the proba-
bilities in descending order of magnitude such that a1 > a2 > a3 > � � � > an. Note that the magnitude of the
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probability a1 is not necessarily the probability assigned to component 1. With this reordering, the authors

can make the following inferences:

1. If the failure model of the structure is a series system,
Psystem ¼ Max½P1; P2; P3; . . . ; PNM� ¼ a1 ð8Þ

2. If the redundancy of the structure is one, the mode of maximum probability of failure contains compo-

nents with failure probabilities a1 and a2. Consequently,
Psystem ¼ a2 ð9Þ

3. If the redundancy of the structure is two, the mode with the maximum probability of failure contains the

components with failure probabilities a1, a2, and a3. Consequently,
Psystem ¼ a3 ð10Þ

4. By mathematical induction, if the redundancy of the structure is s, the mode with the maximum

probability of failure contains the components with failure probabilities a1; a2; a3; . . . ; as; asþ1. Conse-

quently,
Psystem ¼ asþ1 ð11Þ
On the basis of Statement 4 above, the authors propose the following rule to estimate the probability of

failure of an arbitrary structure without knowledge of the sequence of failure of the components in a mode

or the elements of the mode.

If the failure probabilities of the elements are rearranged in order of descending magnitude

a1 > a2 > a3 > � � � > aN and if the redundancy of the structure (or substructure) is s, an estimate of the

failure probability of the system is given by Psystem ¼ asþ1.
Furthermore, the sþ 1 elements participating in the failure mode are those elements with failure

probabilities a1; a2; a3; . . . ; as; asþ1. Note that the estimate given by (11) may be thought of as a lower bound

of the upper bound of failure mode probabilities.
2.4. Estimation of failure probabilities of components

Suppose a structural element has only one load effect S resisted by one resistance R. The load effect S may

be obtained from the applied loading Q through a structural analysis. It is important to note that R and S
should be expressed in the same units. If its resistance R is less than, or equal to, the stress resultant S acting

on it, that element is considered to have failed. The probability of failure, pf , of the structural element can

be stated in any of the following ways:
pf ¼ P ðR6 SÞ ¼ P ðR� S6 0Þ ¼ P ðR=S6 1Þ ð12Þ

or
pf ¼ P ½GðR; SÞ6 0� ð13Þ

where Gð�Þ is termed the ‘‘limit state function’’ or the ‘‘failure function’’.

The most notable example is when R and S are normal random variables with means lR and lS and

variances r2
R and r2

S , respectively. The safety margin M ¼ R� S then has a mean and variance
lM ¼ lR � lS ð14Þ
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and
r2
M ¼ r2

R þ r2
S ð15Þ
using well-known rules for addition (subtraction) of normal random variables. Eq. (12) then becomes
pf ¼ PðR� S6 0Þ ¼ PðM 6 0Þ ¼ U
0� lM

rM

� �
ð16Þ
where U is the standard normal distribution function (zero mean and unit variance). Using (14) and (15)

it follows that
pf ¼ U
�ðlR � lSÞ
ðr2

R þ r2
SÞ

1=2

 !
¼ Uð�bÞ ð17Þ
where b is defined as the safety index (Cornell, 1969)
b ¼ lM=rM ð18Þ
Evidently, (17) yields the exact probability of failure when both R and S are normally distributed and hence

b is a direct measure of the safety of the structural element, i.e., greater b represents greater safety.

In (17), only two random variables, i.e., load and resistance, were considered. If the limit state function

GðXÞ consists of more than two basic random variables, a useful approach is to calculate approximate

moments by expanding GðX1;X2; . . . ;XnÞ as a first-order Taylor series about the means lX1
; lX2

; . . . ; lXn

(Ang and Tang, 1975)
lM � GðlX1
; lX2

; . . . ; lXn
Þ ð19Þ
and
r2
M �

Xn
i¼1

oG
oXi

� �2

lXi

���� r2
Xi

ð20Þ
This is the well-known first-order second-moment (FOSM) method. The safety index b defined by (18) is

still effective in this case and the probability of failure can also be formulated, provided the basic variables

Xi (i ¼ 1; 2; . . . ; n) are normally distributed
pf ¼ Uð�bÞ ð21Þ
In this study, (19)–(21) will be used as a mathematical model to estimate the failure probabilities of

structural elements.
3. Numerical examples

The validity of the proposed methodology which can estimate the system reliability of arbitrary structure

is demonstrated via numerical examples. It is assumed that the yield stresses of the members and the applied

loads to the structure are statistically independent normal random variables. The objective of this section is

to compare the exact reliability of a structure obtained using existing reliability theory with the reliability

resulted from the proposed methodology. Three structures are selected for the purpose of this section.

These structures include: (a) a redundant portal frame; (b) 6-member truss with one degree of redundancy;
and (c) 16-member truss with three degrees of redundancy.
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3.1. Portal frame

3.1.1. Reliability using the existing method

A simple portal frame is shown in Fig. 5 (Thoft-Christensen and Murotsu, 1986). In this example, all
joints are rigid moment-resisting joints. The height of the column is 5 m and the span of the beam is 10 m.

Material properties are estimated such that all structural elements have the same area A ¼ 0:459� 10�2 m2

and the same second moment of area I ¼ 0:579� 10�4 m4. All members are assumed to be made of the

same material with modulus of elasticity E ¼ 0:21� 109 kN/m2, density q ¼ 7850 kg/m3, and Poisson’s

ratio m ¼ 0:3. The plastic bending moment capacities of the beam (Rb) and columns (Rc) are given such that
lRb
¼ 135 kNm; rRb

¼ 13:5 kNm

lRc
¼ 135 kNm; rRc

¼ 13:5 kNm
where l denotes the mean and r represents the standard deviation.

As shown in Fig. 5, this portal frame is subjected to a random vertical load V and a random horizontal

load H. The concentrated vertical load acts at the middle of the beam and the horizontal load is applied at

the top of the left column. All loads are taken to be static. The vertical load V and horizontal load H are

given by
lV ¼ 45 kN; rV ¼ 4:5 kN

lH ¼ 55 kN; rH ¼ 5:5 kN:
The collapse of the example structure may be caused by the formation of plastic hinges at the joints. The

potential locations of plastic hinges are indicated by ‘‘·’’ in Fig. 6. Ten possible collapse mechanisms
Fig. 5. Geometry of portal frame.

Fig. 6. Potential locations of plastic hinges.
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resulting from the combination of the vertical load V and the horizontal load H are shown in Fig. 7. The

corresponding limit state functions (gi) using the virtual work theory (McCormac, 1975) are also presented

in Fig. 7. In each function, the work performed by the external loads during the displacement is subtracted

from the internal work absorbed by the hinges. Failure is said to occur when this function is less than, or
equal to, zero.

To compute the failure probabilities of the possible failure modes, the standard procedure from the first-

order second-moment (FOSM) reliability method summarized in the previous section is utilized. Table 1

lists the safety indices and the corresponding failure probabilities for the 10 failure modes.

A simple bounds technique (Cornell, 1967) is adopted to estimate the probability of failure of the system

and then the lower and upper bounds are
Table

Failur

Mo

1

2

3

4

5

6

7

8

9

10
maxðPiÞ6 Psystem 6 1�
Y10
i¼1

ð1� PiÞ �
X10
i¼1

Pi ð22Þ
1

e probabilities for possible failure modes

de no. Failure function Safety index (b) Failure probability (Pi)

g1 ¼ 4Rb � 5V 5.385 0.363· 10�7

g2 ¼ 2Rb þ 2Rc � 5V 7.107 0.591· 10�12

g3 ¼ 3Rb þ Rc � 5V 6.528 0.334· 10�10

g4 ¼ 3Rb þ Rc � 5V 6.528 0.334· 10�10

g5 ¼ 4Rc � 5H 4.373 0.612· 10�5

g6 ¼ 2Rb þ 2Rc � 5H 5.632 0.892· 10�8

g7 ¼ Rb þ 3Rc � 5H 5.218 0.902· 10�7

g8 ¼ Rb þ 3Rc � 5H 5.218 0.902· 10�7

g9 ¼ 4Rb þ 2Rc � 5H � 5V 4.425 0.482· 10�5

g10 ¼ 2Rb þ 4Rc � 5H � 5V 4.425 0.482· 10�5
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where Pi is the probability of occurrence of mode i. Note that the lower bound assumes that all failure

modes are fully dependent and upper bounds assumes that all failure modes are independent. From Table

1, the system failure probability is bounded by 0:612� 10�5
6 Psystem 6 0:160� 10�4. Clearly, the failure

modes 1, 2, 3, 4, 6, 7, and 8 have negligible effects on the failure probability of the system.
3.1.2. Reliability using the proposed method

The critical failure elements 1–7 are indicated by the symbol ‘‘·’’ in Fig. 6. In this example, a joint fails
when the resisting plastic moment capacity of the joint is exceeded. These critical elements are taken to be

those locations where plastic hinges are most likely to occur in the structure. Note that the structure is

statically indeterminate to the third degree. If the sequence of failure is ignored, failure of any four of the

seven joints leads to the failure (kinematic instability) of the system. Therefore, there are 35 possible

combinations of seven element taken four at a time. The general failure model which describes this simple

structure is therefore a system with 35, four-arm, parallel modes in series.

To compute the failure probabilities of the joints, the standard procedure from the first-order second-

moment (FOSM) reliability method is utilized. First, failure functions are generated for each joint.
Beginning with the structure in Fig. 5, one can first set H ¼ 1 and V ¼ 0. Next, a numerical structural

analysis on the system can be performed and the resultant moment at each joint due to unit horizontal load

can be set equal to eHi. Next, one can set H ¼ 0 and V ¼ 1, then perform a similar numerical structural

analysis, and set the resultant moment at each joint due to unit vertical load to be eVi. With Ri as the

resisting moment of joint i, the safety margin, gi, for the joint becomes:
Table

Compo

Join

1

2

3

4

5

6

7

gi ¼ Ri � jeHiH þ eViV j ð23Þ
where jeHiH þ eViV j represents the absolute value of the resultant moment. These functions are provided in

the second column of Table 2. Next, using the loading and resistance statistics with (19)–(21), safety indices

and the corresponding failure probabilities are listed in the third and fourth column of Table 2.
According to the rule proposed in this study, the system failure probability is the fourth largest value

among the seven component failure probabilities. For example, the value of 0.584 · 10�5, which is the

fourth largest value in Table 2, is taken as the system failure probability.
3.2. 6-Member truss structure

3.2.1. Reliability using the existing method

Consider a statically indeterminate 6-member truss with one degree of redundancy shown in Fig. 8

(Murotsu et al., 1980). The truss height is 91.44 cm and the width is 121.9 cm. Table 3 lists the material

properties of truss members. As shown in Fig. 8, one static concentrated force, P , is acting at the top of the

left vertical member and the statistics of P are given such that lP ¼ 44:45 kN and rP ¼ 4:445 kN.
2

nent failure probabilities using proposed methodology (portal frame)

t no. Failure function Safety index (b) Failure probability (Pi)

g1 ¼ Rc � j � 1:5681H þ 0:4919V j 4.384 0.584· 10�5

g2 ¼ Rc � j0:9379H � 0:9973V j 8.478 0.115· 10�16

g3 ¼ Rb � j0:9379H � 0:9973V j 8.478 0.115· 10�16

g4 ¼ Rb � j0:0015H þ 1:5027V j 4.457 0.415· 10�5

g5 ¼ Rb � j � 0:9349H � 0:9973V j 2.558 0.526· 10�2

g6 ¼ Rc � j � 0:9349H � 0:9973V j 2.558 0.526· 10�2

g7 ¼ Rc � j1:5590H þ 0:4919V j 1.680 0.465· 10�1



Fig. 8. Statically indeterminate 6-member truss structure with one degree of redundancy.

Table 3

Material properties for truss members (6-member truss structure)

Member no. Cross-sectional area A (cm2) Mean value of yield stress, ry (Pa) Elastic modulus, E (Pa)

1, 2, 5, 6 1.33 2.76· 108 2.06· 1011
3, 4 1.49 2.76· 108 2.06· 1011
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Murotsu et al. (1980) defined that the complete failure of the structure is determined by investigating
singularity of the total structure stiffness matrix K formed with the members in survival. That is, the cri-

terion for complete failure is given by
Table

Failur

COV

P

0.1
jKj ¼ 0 ð24Þ
where jKj represents the determinant of matrix K.

In case of a statically indeterminate truss, there exist many possible failure modes or paths to complete

failure of the structure and it is impossible in practice to generate all of them. Hence, the failure probability

is estimated by evaluating its lower and upper bounds. The lower bound is evaluated by selecting the
dominant modes of failure and calculating their failure probabilities. The upper bound is evaluated by

assuming that the redundant truss behaves itself like a statically determinate truss, i.e., the structure fails if

any one member is subject to failure. Table 4 presents the lower bound and upper bound (Murotsu et al.,

1980) of the system failure probabilities along with the Monte Carlo simulation result performed by Kathir

(1991) on the same structure. In this example, failure due to buckling is not considered.

3.2.2. Reliability using the proposed method

The failure element can be any member of 6 truss elements. In this example, a member fails when the

resisting axial load capacity in tension or compression of the member is exceeded. Failure via buckling is

not considered. Note that the structure is statically indeterminate to the one degree. If the sequence of

failure is ignored, failure of any two of the six truss elements leads to the failure (kinematic instability) of
the system. Therefore, there are fifteen possible combinations of six taken two at a time.
4

e probabilities from Murotsu et al. (1980) and Kathir (1991)

Failure probability

ry Lower bound Upper bound Simulation

0.1 1.96· 10�4 6.40· 10�3 3.60· 10�3
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To compute the failure probabilities of the failure elements, the standard procedure from the first-order

second-moment (FOSM) reliability method is utilized. First, failure functions are generated for each ele-

ment. Beginning with the structure in Fig. 8, set P ¼ 1 and perform a numerical structural analysis on the

system then set the resulting internal axial force at each member due to the unit load to be ei. With Vi as the
resisting axial capacity of element i, the safety margin, gi, for the element becomes:
Table

Compo

Elem

1

2

3

4

5

6

gi ¼ Vi � jeiP j ð25Þ
where jeiP j is the absolute value of the resultant axial force in tension or compression. These functions are

provided in the second column of Table 5. Next, using the loading and resistance statistics with (19)–(21),

safety indices and the corresponding failure probabilities are listed in the third and fourth column of Table

5. According to the rule proposed in this study, the system failure probability is the second largest value

among the six component failure probabilities. For example, the value of 3.59 · 10�3, which is the second

largest value in Table 5, is taken as the system failure probability.

3.3. Member truss structure

3.3.1. Reliability using the existing method

Consider a statically indeterminate 16-member truss with three degree of redundancy shown in Fig. 9

(Murotsu et al., 1980). The truss width is 121.9 cm and consists of three stories in which the height of a
5

nent failure probabilities using proposed methodology (6-member truss structure)

ent no. Failure function Safety index (b) Failure probability (Pi)

g1 ¼ V1 � j0:50P j 3.375 3.69· 10�4

g2 ¼ V2 � j0:3751P j 4.969 3.36· 10�7

g3 ¼ V3 � j0:6250P j 2.689 3.59· 10�3

g4 ¼ V4 � j � 0:6250P j 2.689 3.59· 10�3

g5 ¼ V5 � j � 0:3751P j 4.969 3.36· 10�7

g6 ¼ V6 � j � 0:50P j 3.375 3.69· 10�4

Fig. 9. Statically indeterminate 16-member truss structure with three degrees of redundancy.



Table 6

Material properties for truss members (16-member truss structure)

Member no. Cross-sectional area A (cm2) Mean value of yield stress, ry (Pa) Elastic modulus, E (Pa)

1 3.35

2, 5 8.64

3, 4, 14 5.76

6 2.29 2.76· 108 2.06· 1011
7, 8, 10 4.03

9 7.35

11, 12, 15 1.58

13, 16 2.29

Table 7

Failure probabilities from Murotsu et al. (1980)

COV Failure probability

P ry Lower bound Upper bound

0.1 0.1 2.73· 10�6 3.84· 10�3
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story is 91.44 cm. Table 6 lists the material properties of truss members. As shown in Fig. 9, three static
concentrated forces denoted P are acting at the top of each story where lP ¼ 44:45 kN and rP ¼ 4:445 kN.

The failure modes are the same as described in the example of a 6-member truss. Table 7 presents the

lower bound and upper bound (Murotsu et al., 1980) of the system failure probabilities. In this example,

failure due to buckling is not considered.
3.3.2. Reliability using the proposed method

The failure element can be any member of 16 truss elements. In this example, a member fails when the

resisting axial load capacity in tension or compression of the member is exceeded. Failure via buckling is
Table 8

Component failure probabilities using proposed methodology (16-member truss structure)

Element no. Failure function Safety index (b) Failure probability (Pi)

1 g1 ¼ V1 � j1:2430P j 3.455 2.76· 10�4

2 g2 ¼ V2 � j3:1828P j 3.498 2.34· 10�4

3 g3 ¼ V3 � j2:1964P j 3.288 5.04· 10�4

4 g4 ¼ V4 � j � 1:5538P j 5.187 1.07· 10�7

5 g5 ¼ V5 � j � 3:5684P j 2.788 2.65· 10�3

6 g6 ¼ V6 � j � 0:3929P j 6.975 1.52· 10�12

7 g7 ¼ V7 � j1:7734P j 2.377 8.73· 10�3

8 g8 ¼ V8 � j0:7949P j 6.503 3.93· 10�11

9 g9 ¼ V9 � j � 1:7052P j 5.867 2.21· 10�9

10 g10 ¼ V10 � j � 1:2271P j 4.576 2.37· 10�6

11 g11 ¼ V11 � j0:0648P j 9.319 5.86· 10�21

12 g12 ¼ V12 � j0:5257P j 4.091 2.15· 10�5

13 g13 ¼ V13 � j0:3741P j 7.127 5.14· 10�13

14 g14 ¼ V14 � j � 0:8760P j 7.334 1.12· 10�13

15 g15 ¼ V15 � j � 0:2245P j 7.517 2.79· 10�14

16 g16 ¼ V16 � j � 0:2992P j 7.727 5.52· 10�15
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not considered. The system may fail as a result of global instability or local instability. First, the global

instability is examined. Note that the structure is statically indeterminate to the third degree. If the sequence

of failure is ignored, failure of any four of the 16 truss elements leads to the failure (kinematic instability)

of the system. Therefore, there are 1820 possible combinations of 16 taken four at a time. As illustrated
in Fig. 4, one may define local failure if anyone of the three stories fails. Therefore, if any two elements of

one of the substructures fail, a floor of the structure will fail.

The failure functions for each element are generated using (25). These functions are provided in the

second column of Table 8. Next, using the loading and resistance statistics with (19)–(21), safety indices and

the corresponding failure probabilities are listed in the third and fourth column of Table 8. According to

the rule proposed in this study, the system failure probability is the fourth largest value among the 16

component failure probabilities for the global failure modes. For example, the value of 2.76 · 10�4, which is

the fourth largest value in Table 8, is taken to be the system failure probability. For the local modes, the
failure probability for each floor is given by the second largest failure probability of the elements. For

example, the failure probability for the first floor is 5.04 · 10�4, the failure probability for the second floor is

2.37 · 10�6, and the failure probability for the third floor is 5.14 · 10�13. Therefore, if the local and global

modes are considered together, the failure probability of the system is 5.04 · 10�4.
4. Discussion of the results

In Table 9, the estimated failure probabilities generated using the proposed methodology are compared

to those calculated from existing reliability techniques. Note that the basic assumptions behind the

methodology were: (a) the safety margins of the elements and failure modes are fully correlated; (b) the

kinematic instability of a structural system defines the failure or collapse of the structure; and (c) the order

of the failure of components in a given mode is disregarded. Certainly, investigations and comparisons on

other structures to confirm the assumptions must be produced in the future. From the results, the following

observations are made:

1. The predicted probabilities of system failure using the proposed technique close to or fall within bounds

proposed in the literature;

2. In the case where data were available, the predicted failure probability agrees well with the result ob-

tained via Monte Carlo simulation;

3. The proposed technique is computationally efficient when compared to other methods, especially for the

complex structures that are highly indeterminate and have many elements;

4. The proposed technique automatically seeks and identifies the most probable failure mode; and

5. The proposed technique can be applied to any structural type.
Table 9

Comparisons of reliability techniques

Type of structure Probability of failure of system

Bounds technique Monte Carlo

simulation

Proposed

technique
Lower Upper

Portal frame 6.12· 10�6 1.60· 10�5 – 5.84· 10�6

6-Member truss 1.96· 10�4 6.40· 10�3 3.60· 10�3 3.59· 10�3

16-Member truss 2.73· 10�6 3.84· 10�3 – 5.04· 10�4
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5. Summary and conclusions

In this paper, a general methodology for the estimation of systems reliability for arbitrary structural

systems was proposed. First, a theory to estimate the system failure probability was developed under the
basic assumptions that the failure modes are completely correlated and that the sequence of component

failure in a given mode is not important. According to the consequence of these assumptions, a simple rule

has been proposed for direct estimation of system failure probability from the element or component failure

probabilities. A model to estimate the element or component failure probabilities was formulated by the

first-order second-moment (FOSM) reliability method. Finally, the proposed technique was compared to

the current reliability methods (i.e., bound technique and Monte Carlo simulation) through three examples:

(1) a simple portal frame; (2) a 6-member truss; and (3) a 16-member truss.

From this study, two conclusions are made. First, the results obtained for the example structures used
here indicate that the predicted system reliability values agree closely with those values predicted by other

approaches. Second, the proposed technique is computationally efficient when compared to other methods,

especially for the complex structures that are highly indeterminate and have many elements.
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